
V-Express是由南京大学和腾讯AI实验室共同开发的一项技术,旨在通过参考图像、音频和一系列V-Kps图像来生成说话的头像视频。这项技术可以根据不同的信号,如声音、姿势、图像参考等来控制视频内容,确保即使是弱信号也能有效地影响最终生成的视频,使视频生成更加逼真和多样化。
V-Express通过一系列渐进式的丢弃操作来平衡不同的控制信号,逐步实现由弱条件有效控制的生成能力,从而同时考虑姿势、输入图像和音频。
底层技术
在肖像视频生成领域,使用单张图片生成肖像视频的做法越来越普遍。常见的方法包括利用生成模型增强适配器以实现可控生成。
然而,控制信号的强度可能不同,包括文本、音频、图像参考、姿态、深度图等。在这些中,较弱的条件经常因为较强条件的干扰而难以发挥效果,这在平衡这些条件中构成了挑战。
在关于肖像视频生成的工作中,发现音频信号特别弱,常常被姿态和原始图像这些较强的信号所掩盖。然而,直接使用弱信号进行训练往往导致收敛困难。为了解决这个问题,提出了一种名为V-Express的简单方法,通过一系列逐步的弱化操作来平衡不同的控制信号。该方法逐渐使弱条件能够有效控制,从而实现同时考虑姿态、输入图像和音频的生成能力。
使用方法
重要提醒~
在讲话面孔生成任务中,当目标视频中的人物与参考人物不同时,面部的重定向将是非常重要的部分。选择与参考面孔姿势更相似的目标视频将能够获得更好的结果。
运行演示(第一步,可选)
如果你有目标讲话视频,你可以按照下面的脚本从视频中提取音频和面部V-kps序列。你也可以跳过这一步,直接运行第二步中的脚本,尝试提供的示例。
python scripts/extract_kps_sequence_and_audio.py \ –video_path “./test_samples/short_case/AOC/gt.mp4” \ –kps_sequence_save_path “./test_samples/short_case/AOC/kps.pth” \ –audio_save_path “./test_samples/short_case/AOC/aud.mp3”
建议裁剪一个清晰的正方形面部图像,如下面的示例所示,并确保分辨率不低于512×512。下图中的绿色到红色框是推荐的裁剪范围。
运行演示(第二步,核心)
场景1(A的照片和A的讲话视频)
如果你有A的一张照片和另一个场景中A的讲话视频,那么你应该运行以下脚本。模型能够生成与给定视频一致的讲话视频。你可以在项目页面上看到更多示例。
python inference.py \
–reference_image_path “./test_samples/short_case/AOC/ref.jpg” \
–audio_path “./test_samples/short_case/AOC/aud.mp3” \
–kps_path “./test_samples/short_case/AOC/kps.pth” \
–output_path “./output/short_case/talk_AOC_no_retarget.mp4” \
–retarget_strategy “no_retarget” \
–num_inference_steps 25
场景2(A的照片和任意讲话音频)
如果你只有一张照片和任意的讲话音频。使用以下脚本,模型可以为固定的面孔生成生动的嘴部动作。
python inference.py \
–reference_image_path “./test_samples/short_case/tys/ref.jpg” \
–audio_path “./test_samples/short_case/tys/aud.mp3” \
–output_path “./output/short_case/talk_tys_fix_face.mp4” \
–retarget_strategy “fix_face” \
–num_inference_steps 25
更多参数
对于不同类型的输入条件,如参考图像和目标音频,提供了参数来调整这些条件信息在模型预测中的作用。将这两个参数称为 reference_attention_weight 和 audio_attention_weight。
可以使用以下脚本应用不同的参数以达到不同的效果。通过实验,建议 reference_attention_weight 取值在 0.9-1.0 之间,而 audio_attention_weight 取值在 1.0-3.0 之间。
模型下载
你可以从https://huggingface.co/tk93/V-Express下载模型。已经在模型卡中包含了所有所需的模型。你也可以从原始仓库单独下载模型。
·stabilityai/sd-vae-ft-mse
·runwayml/stable-diffusion-v1-5。这里只需要unet的模型配置文件。
·facebook/wav2vec2-base-960h
·insightface/buffalo_l
数据统计
相关导航

Aiuni AI 是一款基于 Unique3D 开源技术的在线 AI 图片转 3D 模型生成建模工具,它能够在 30 秒内将单张图片转换为高质量的 3D 模型。用户通过简单的图片上传和点击生成,用户即可获得 360 度无死角的 3D 模型,确保每个角度都具有一致性和高质量的细节。

Darwin
Darwin是一个开源项目,专注于自然科学领域的大型语言模型构建,主要涵盖物理、化学和材料科学。通过对科学文献和数据集进行预训练和微调,Darwin 在科学问答和多任务学习任务中表现优异。它结合了结构化和非结构化的科学知识,提升了语言模型在科学研究中的效能。

HoloDreamer
HoloDreamer是一款文本驱动的3D场景生成框架,通过用户的文本描述生成沉浸式且视角一致的完整3D场景。它由风格化全景生成和增强型全景重建两个核心模块组成,该框架首先生成高清晰度的全景图作为完整3D场景的整体初始化,然后利用3D高斯散射(3D-GS)技术快速重建3D场景,从而实现视角一致和完全封闭的3D场景生成。HoloDreamer在虚拟现实、游戏和影视行业中有广泛应用,为这些领域提供了新的解决方案。

StereoCrafter
StereoCrafter是腾讯AI实验室开发的一款开源框架,能够将普通的 2D 视频转换为沉浸式的 3D 视频。通过深度估计和立体视频修复技术,StereoCrafter 提供高质量的 3D 视频生成,支持多种视频源,包括电影、视频博客、3D 动画和 AI 生成内容。

Llama 2
Llama 2是Meta AI推出的新一代大型语言模型(LLM),参数规模从70亿到700亿不等。它是为对话场景而优化的,称为Llama 2-Chat,能够在多数基准上超越开源的对话模型,并且在人类评估的有用性和安全性上,可能是闭源模型的合适替代品。

Goku
Goku 是一个基于流生成的视频生成基础模型,由香港大学和字节跳动研究团队共同开发。Goku 模型主要用于生成高质量的视频内容,尤其在广告和营销场景中表现尤为出色。

腾讯混元3D
腾讯混元3D,全称为 Hunyuan3D-1.0,是腾讯推出的首个同时支持文生和图生的3D开源模型,专门解决现有3D生成模型在生成速度和泛化能力方面的不足。该模型采用了基于Diffusion 技术的架构,能够同时支持文本生成和图像生成3D资产。

SEED-Story
SEED-Story是一个腾讯开源的基于大型语言模型(MLLM)的多模态长篇故事生成模型,它能够根据用户提供的图片和文本生成连贯的叙事文本和风格一致的图片。无论是小说创作、剧本编写还是视觉故事,SEED-Story都能提供高质量、多模态的内容,助力创意产业的发展。
暂无评论...